
 

 

  
Abstract—This paper reports an empirical study of the behavior 

of the test and training errors in different systems. Frequently the test 
error of Artificial Neural Networks is presented with a monotonic 
decreasing behavior as a function of the iteration number, while the 
training error also continuously decreases. The present paper shows 
examples where such behavior does not hold, with data collected 
from systems where it is corrupted by either noise or actuation delay. 
This shows that selecting the best model is not a simple question and 
points to automatic procedures for the selection of models as the best 
solution to optimize their capacity, either with the Regularization or 
Early Stopping techniques.  
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I. INTRODUCTION 

HIS paper reports an empirical study of the behavior of 
the test and training errors in different systems. 

It is very common in the literature to present the test error of 
an Artificial Neural Network (ANN) with a monotonic 
decreasing behavior as a function of the iteration number, 
while the training error also continuously decreases. This 
behavior is, most of the times, illustrated by drawings instead 
of simulations or data from a real system. Some examples of 
exceptions can be found in [1] and [2].  

The present paper shows examples where such behavior 
does not hold, with data collected from systems where it is 
corrupted by either noise or actuation delay. 

The behavior of the test error presented points to automatic 
procedures for the selection of models as the best solution to 
optimize their capacity, either with the Regularization or Early 
Stopping techniques. 

The models presented here were trained using a non-
variable pre-established initial set of weights to enable the 
comparison of the results without the random effect of a 
variable set of weights. 
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II.  THE TEST SYSTEMS 

The data presented here is collected from two different 
systems. 

A. Cruise Control Distributed System 

The first one is from a first order system corresponding to a 
cruise control system as shown in equation 1: 
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The cruise control system is distributed through three 

processing nodes over a fieldbus according to the architecture 
presented in figure 1. 
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Fig. 1.  Architecture of the distributed control system. 

 
The sensor node samples the plant and sends the sampled 

value to the controller node. The controller receives the 
sampled value and computes the actuation value to send to the 
actuator node. The actuator node receives the actuation value 
and acts on the plant. 

The distribution of the controller and the use of a fieldbus to 
connect the nodes of the control loop induce variable delay 
between the sampling instant and the actuation instant. The 
delays are introduced due to the medium access control 
(MAC) of the network, the processing time, the processor 
scheduling in the nodes and the scheduling mechanism used to 
schedule the bus time. These delays are usually variable from 
iteration to iteration of the control loop. 

To simulate this architecture the delays were introduced 
according to the representation of figure 2. 
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Fig. 2.  Histogram of the number of samples versus the delay 

introduced. 
 

B. Reduced Scale Prototype Kiln 

The second system is a reduced scale prototype kiln affected 
by measurement noise. Additional details about this system 
can be found in [6] and [8]. 
 

The system is composed of a kiln, electronics for signal 
conditioning, power electronics module, cooling system and a 
Data Logger from Hewlett Packard HP34970A to interface 
with a Personal Computer (PC). 
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Fig. 3.  Schematic view of the kiln. 
 
Details about the kiln can be seen in figure 3 and the 
connections between the modules can be seen in figure 4. 
The kiln is a cylindrical metal box of steal which is completely 
closed, filled with an isolating material up to the kiln chamber. 
The kiln chamber is limited by the metallic terminators and o-
rings.  
Inside the chamber there is an oxygen pump and an oxygen 
sensor that will be used for the second loop mentioned above. 
The heating element is an electrical resistor that is driven by 
the power module. 
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Fig. 4.  Block diagram of the system. 
 

The Data Logger acts as an interface to the PC where the 
controller is implemented using MATLAB. Through the Data 
Logger bi-directional information is passed: control signal in 
real-time supplied by the controller and temperature data for 
the controller. The temperature data is obtained using a 
thermocouple. 

The power module receives a voltage signal from the 
controller implemented in the PC, which ranges from 0 to 
4.095V and converts this signal in a power signal ranging from 
0 to 220V. 

 

Fig. 5. Picture of the power module. 
 
The signal conversion is implemented using a sawtooth 

wave generated by a set of three modules: zero-crossing 
detector, binary 8 bit counter and D/A converter. The sawtooth 
signal is then compared with the input signal generating a 
PWM type signal.  

The PWM signal is applied to a power amplifier stage that 
produces the output signal. The signal used to heat the kiln 
produced this way is not continuous, but since the kiln has 
integrator behavior this does not affect the functioning.  

The actual implementation of this module can be seen in 
figure 5 and a block diagram of the power module processing 
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can be seen in figure 6. 
Operating range of the kiln under normal conditions is 

between 750ºC and 1000ºC. A picture of the kiln and 
electronics can be seen in figure 7. 

Both systems were chosen because the effect of the 
perturbations provides a behavior which is different from a 
simulated system. 
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Fig. 6.  Block diagram of the power module. 
 

 
 

Fig. 7. Picture of the kiln and electronics. 
 

III.  TRAINING VERSUS TEST ERROR 

For both systems training was performed for 10000 
iterations using the Levenberg-Marquardt algorithm [3] [4]. 
After each training epoch, the test sequence was evaluated to 
allow permanent monitoring of the training and test error.  

Usually a train and a test sequence are used. The first one is 
used to update the weights based in the error obtained at the 
output and the second is used to test if the ANN is learning the 
general behavior of the system to be modeled, instead of 
learning the training sequence. 

Some authors consider using a third sequence to ensure that 
the ANN is able to generalize the behavior that is desired in 
different situations or to compare the quality of different 
networks [5].  
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Fig. 8- The test and training error as a function of the 

iteration for the direct model of the first system with 4 
neurons.  

 
Figures 8 to 15, for the first system, and 16 to 27, for the 

second, represent the plots of both train and test errors for the 
training of both direct and inverse models of the systems.  

In all the figures the training error is always the line with the 
lower values. 
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Fig. 9- The test and training error as a function of the 

iteration for the inverse model of the first system with 4 
neurons.  

 

IV.  DISCUSSION 

As stated in the introduction, the literature presents 
frequently both the training and test errors with a monotonic 
behavior. It can be seen from the two examples shown here 
that such behavior is not always found in real systems. 

The examples show, in many situations, that both for direct 
and inverse models, while the training error is always 
monotonic, the test error finds frequently hills and vales.  
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Fig. 10- The test and training error as a function of the 

iteration for the direct model of the first system with 6 
neurons.  
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Fig. 11- The test and training error as a function of the 

iteration for the inverse model of the first system with 6 
neurons.  

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

-4

 
Fig. 12- The test and training error as a function of the 

iteration for the direct model of the first system with 8 
neurons.  
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Fig. 13- The test and training error as a function of the 

iteration for the inverse model of the first system with 8 
neurons. 
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Fig. 14- The test and training error as a function of the 

iteration for the direct model of the first system with 10 
neurons.  

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8
x  10

-3

 
Fig. 15- The test and training error as a function of the 

iteration for the inverse model of the first system with 10 
neurons. 

INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT
Issue 3, Volume 2, 2008

86



 

 

 
Figures 8 to 11 of the first model and all the figures of the 

direct model of the second system show an initial phase of 
learning, followed by a very flat zone where learning is very 
slow for the test and training error.  

In the rest of cases it is possible to find a very different 
behavior for the train and test error. While the training error 
continues to decrease with iterations, the test error shows 
frequently hills and vales. 

The different tests shown in the figures correspond to the 
two systems referred above, modeled with different number of 
neurons. While usually a larger set of weights allows obtaining 
a lower training error, the existence of more degrees of 
freedom enable the test error to be composed of much more 
ups and downs then it is the case with less parameters. 
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Fig. 16- The test and training error as a function of the 

iteration for the direct model of the second system with 4 
neurons.  
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Fig. 17- The test and training error as a function of the 

iteration for the inverse model of the second system with 4 
neurons.  

 
For the second system more figures are shown because, with 

a larger number of parameters it presents curves which are less 
common. 

V. REGULARIZATION AND EARLY STOPPING 

The oscillations found in the test error of the systems chosen 
as an example lead to the necessity of choosing carefully the 
length of the training stage or to apply another solution to 
obtain the best quality for the models. 

Two possible solutions that can be used to cope with these 
problems are Early Stopping and Regularization techniques. 

 

A. Regularization 

For the training algorithms that are based on derivatives the 
first parameters to be updated are the ones with larger 
influence in the criteria to be minimized, while in a second 
phase other less important parameters are updated. 
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Fig. 18- The test and training error as a function of the 

iteration for the direct model of the second system with 6 
neurons. 
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Fig. 19- The test and training error as a function of the 

iteration for the inverse model of the second system with 6 
neurons.  
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These last parameters to be updated are the ones responsible 
for the overtraining problem by learning characteristics of the 
training signal and the noise. The overtraining, i.e. excessive 
training, situation results in a network that over fits the training 
sequence but is not capable of the same performance with a 
test sequence, because the ANN has learned details of the 
training sequence instead of the general behavior. 

One way to avoid this second phase in training is called 
regularization and it consists of changing the criteria to be 
minimized according to: 

 
2
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          (2) 

where δ, the weight decay is a small value and   is the 
original criterion to be minimized. 
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Fig. 20- The test and training error as a function of the 

iteration for the direct model of the second system with 8 
neurons. 
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Fig. 21- The test and training error as a function of the 

iteration for the inverse model of the second system with 8 
neurons.  
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Fig. 22- The test and training error as a function of the 

iteration for the direct model of the second system with 10 
neurons. 
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Fig. 23- The test and training error as a function of the 

iteration for the inverse model of the second system with 10 
neurons. 
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Fig. 24- The test and training error as a function of the 

iteration for the direct model of the second system with 15 
neurons. 
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Fig. 25- The test and training error as a function of the 

iteration for the inverse model of the second system with 15 
neurons. 

 
The idea is to eliminate the so called second phase in 

learning where parameters with small influence are updated by 
introducing a trend towards zero in the parameters. 

The difficulty is to determine the appropriate value of δ for 
performing regularization. 
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Fig. 26- The test and training error as a function of the 

iteration for the direct model of the second system with 20 
neurons. 

 

B. Early Stopping 

Another way to avoid the overtraining, called early 
stopping, which is quite intuitive, consists in stopping training 
before the second phase of training starts but after the first one 
is concluded so that the characteristics of the system are 
learned. 

Clearly the difficulty here is to find the exact number of 
iterations for performing the training.  

Both solutions have been proved to be formally equivalent 
in [2]. Nevertheless it is important to take into account the 
difficulties to determine the regularization parameter for 
explicit regularization or the number of iterations to use for 

early stopping. One example of comparison of both techniques 
in an automated procedure can be found in [7]. 
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Fig. 27- The test and training error as a function of the 

iteration for the inverse model of the second system with 20 
neurons. 

 

VI.  CONCLUSION  

Two systems were presented where the behavior of the test 
and training error is not the monotonic decreasing usually 
pointed out in the literature.  

The objective is to show that for systems subject to noise or 
actuation delay it is quite common to find a behavior different 
from simulated systems. 

The differences found in the test error for ANNs with more 
parameters are also relevant since this larger set of adjustable 
weights can lead to a better network, but only if the test error 
is carefully evaluated. 

These examples suggest that the choice of the models’ 
characteristics must be careful to avoid getting a worst model 
after a larger training period. This urges for the use of the 
Early Stopping and Regularization techniques that can be very 
helpful both for manual and automatic model selection. 
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