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Test error versus training error in artificial
neural networks for systems affected by noise

Fernando Morgado Dias and Ana Antunes

Abstract—This paper reports an empirical study of the bedravi . THETESTSYSTEMS
of the test and training errors in different systefrequently the test
error of Artificial Neural Networks is presentedtivia monotonic
decreasing behavior as a function of the iteratiomber, while the
training error also continuously decreases. Thegmepaper shows A cruise Control Distributed System
examples where such behavior does not hold, wita dallected . . . .
from systems where it is corrupted by either noisactuation delay. ~ 1he first one is from a first order system corresping to a
This shows that selecting the best model is nimale question and Cruise control system as shown in equation 1:
points to automatic procedures for the selectiomodlels as the best
solution to optimize their capacity, either witretRegularization or 1
Early Stopping techniques. H (s) =

s+l (1)

The data presented here is collected from two rdiffe
systems.

Keywords— Early Stopping, Feedforward Neural Networks,

Regularization, Test Error, Training Error, Weigltay. The cruise control system is distributed througheeh

processing nodes over a fieldbus according to tbleitacture

|. INTRODUCTION P
presented in figure 1.

T HIS paper reports an empirical study of the behawio
the test and training errors in different systems.

It is very common in the literature to presenttést error of
an Artificial Neural Network (ANN) with a monotonic Plant
decreasing behavior as a function of the iteratimmber,
while the training error also continuously decrsas€his
behavior is, most of the times, illustrated by drags instead
of simulations or data from a real system. Somengies of Sensor Controller Actuator

exceptions can be found in [1] and [2]. node (S) node (C) node (A)
The present paper shows examples where such behavio | | |
does not hold, with data collected from systemsraht is CAN bus
corrupted by either noise or actuation delay. Fig. 1. Architecture of the distributed controssm.

The behavior of the test error presented poinesutomatic

procedures for the selection of models as the $mstion to The sensor node samples the plant and sends theesam
optimize their capacity, either with the Regulati@a or Early yalue to the controller node. The controller reesivthe
Stopping techniques. sampled value and computes the actuation valuerto ® the
The models presented here were trained using a NQftuator node. The actuator node receives the tamuealue
variable pre-established initial set of weightsetwable the and acts on the plant.
comparison of the results without the random effefta  The distribution of the controller and the use dikdbus to
variable set of weights. connect the nodes of the control loop induce végialelay
between the sampling instant and the actuatiorarnihsiThe
delays are introduced due to the medium accessrotont
(MAC) of the network, the processing time, the m@ssor
scheduling in the nodes and the scheduling meahnamgd to
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Fig. 2. Histogram of the number of samples vetsagelay

introduced.

B. Reduced Scale Prototype Kiln

The second system is a reduced scale prototypeftdoted
by measurement noise. Additional details about Hyistem
can be found in [6] and [8].

The system is composed of a kiln, electronics igna
conditioning, power electronics module, coolingteys and a
Data Logger from Hewlett Packard HP34970A to irsteef
with a Personal Computer (PC).
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Fig. 3. Schematic view of the kiln.

Details about the kiln can be seen in figure 3 dhd
connections between the modules can be seen iefigu
The kiln is a cylindrical metal box of steal whishcompletely
closed, filled with an isolating material up to tin chamber.
The kiln chamber is limited by the metallic ternima and o-
rings.

Inside the chamber there is an oxygen pump andxggeo
sensor that will be used for the second loop maeticabove.
The heating element is an electrical resistor thairiven by
the power module.
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Fig. 4. Block diagram of the system.

The Data Logger acts as an interface to the PCentiexr
controller is implemented using MATLAB. Through tBata
Logger bi-directional information is passed: cohsignal in
real-time supplied by the controller and tempertdata for
the controller. The temperature data is obtainetshgus
thermocouple.

The power module receives a voltage signal from the
controller implemented in the PC, which ranges fronto
4.095V and converts this signal in a power sigaaging from
0 to 220V.

Fig. 5. Picture of the power module.

The signal conversion is implemented using a saWtoo
wave generated by a set of three modules: zersiogs
detector, binary 8 bit counter and D/A convertdre Bawtooth
signal is then compared with the input signal gatieg a
PWM type signal.

The PWM signal is applied to a power amplifier stalat
produces the output signal. The signal used to tieakiln
produced this way is not continuous, but since kitre has
integrator behavior this does not affect the fioritig.

The actual implementation of this module can bensee
figure 5 and a block diagram of the power modulgcpssing
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can be seen in figure 6.
Operating range of the kiln under normal conditiaas

between 750°C and 1000°C. A picture of the kiln an”

electronics can be seen in figure 7.

Both systems were chosen because the effect of tof 8

perturbations provides a behavior which is differrlom a
simulated system.

220V
AC | Zero-crossing 8 bit binary D/A
detector counter Converter
4
Power |_ Optic _
Stage Decoupling Comparator
1
L—» Vout Vin

Fig. 6. Block diagram of the power module.

Fig. 7. Picture of the kiln and electronics.

I1l. TRAINING VERSUSTESTERROR
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Fig. 8- The test and training error as a functidnthe
iteration for the direct model of the first systewith 4

neurons.

Figures 8 to 15, for the first system, and 16 to &7 the
second, represent the plots of both train andetests for the
training of both direct and inverse models of thetams.

In all the figures the training error is always time with the
lower values.
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Fig. 9- The test and training error as a functidnthe

For both systems training was performed for 1000'6eration for the inverse model of the first systewth 4

iterations using the Levenberg-Marquardt algorit[8h [4].
After each training epoch, the test sequence wahiated to
allow permanent monitoring of the training and &sor.

Usually a train and a test sequence are used.ifsh®fme is
used to update the weights based in the error reddtaat the
output and the second is used to test if the ANMasning the
general behavior of the system to be modeled, adstaf
learning the training sequence.

Some authors consider using a third sequence toetisat
the ANN is able to generalize the behavior thateasired in
different situations or to compare the quality dffedent
networks [5].
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neurons.

IV. DISCUSSION

As stated in the introduction, the literature pn¢se
frequently both the training and test errors witmanotonic
behavior. It can be seen from the two examples shiogre
that such behavior is not always found in realesysst

The examples show, in many situations, that bothdfiect
and inverse models, while the training error is alsv
monotonic, the test error finds frequently hillslarales.
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Fig. 10- The test and training error as a functidnthe
iteration for the direct model of the first systewith 6
neurons.

Fig. 13- The test and training error as a functanthe
iteration for the inverse model of the first systewith 8

neurons.
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Fig. 11- The test and training error as a functanthe
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neurons. iteration for the direct model of the first systemith 10

neurons.
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Fig. 12- The test and training error as a functidnthe

iteration for the direct model of the first systewith 8 Fig. 15- The test and training error as a functanthe
neurons. iteration for the inverse model of the first systevith 10
neurons.
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Figures 8 to 11 of the first model and all the fiegi of the
direct model of the second system show an initlzdse of
learning, followed by a very flat zone where leagnis very
slow for the test and training error.

In the rest of cases it is possible to find a veifferent
behavior for the train and test error. While thairting error
continues to decrease with iterations, the tesbreshows
frequently hills and vales.

The different tests shown in the figures corresptmdhe
two systems referred above, modeled with differemhber of
neurons. While usually a larger set of weightsvedl@btaining
a lower training error, the existence of more degref
freedom enable the test error to be composed ohmuare
ups and downs then it is the case with less pammet
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Fig. 16- The test and training error as a functanthe
iteration for the direct model of the second systeith 4
neurons.
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Fig. 17- The test and training error as a functidnthe
iteration for the inverse model of the second systeith 4
neurons.

For the second system more figures are shown becaith
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a larger number of parameters it presents curvéshvare less
common.

V. REGULARIZATION AND EARLY STOPPING

The oscillations found in the test error of thetsgs chosen
as an example lead to the necessity of choosirgfutlyrthe
length of the training stage or to apply anothdutsan to
obtain the best quality for the models.

Two possible solutions that can be used to copke thid¢se
problems are Early Stopping and Regularizationniples.

A. Regularization

For the training algorithms that are based on dérigs the
first parameters to be updated are the ones withela
influence in the criteria to be minimized, while &nsecond
phase other less important parameters are updated.
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Fig. 18- The test and training error as a functidnthe
iteration for the direct model of the second systeith 6
neurons.
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Fig. 19- The test and training error as a functidnthe
iteration for the inverse model of the second systeith 6
neurons.
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These last parameters to be updated are the spsble
for the overtraining problem by learning charastics of the
training signal and the noise. The overtraining, excessive
training, situation results in a network that offer the training
sequence but is not capable of the same performaithea
test sequence, because the ANN has learned defatlse
training sequence instead of the general behavior.

One way to avoid this second phase in trainingaibed
regularization and it consists of changing theecidt to be
minimized according to:

wW(8) =V (@) + 4’ o

where 8, the weight decay is a small value and
original criterion to be minimized.

is th
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Fig. 22- The test and training error as a functanthe
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iteration for the direct model of the second systeith 15

neurons.
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Fig. 25- The test and training error as a functanthe
iteration for the inverse model of the second swstéth 15

neurons.

The idea is to eliminate the so called second phase
learning where parameters with small influencelgraated by
introducing a trend towards zero in the parameters.

The difficulty is to determine the appropriate \alof 5 for
performing regularization.
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Fig. 26- The test and training error as a functanthe
iteration for the direct model of the second systsitn 20

neurons.

B. Early Stopping

Another way to avoid the overtraining, called earl;m

stopping, which is quite intuitive, consists ingding training
before the second phase of training starts but tfeefirst one
is concluded so that the characteristics of theesysare
learned.

Clearly the difficulty here is to find the exactmber of
iterations for performing the training.

Both solutions have been proved to be formally eajent
in [2]. Nevertheless it is important to take intocaunt the
difficulties to determine the regularization paraene for
explicit regularization or the number of iteratiotws use for
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early stopping. One example of comparison of bethniques
in an automated procedure can be found in [7].
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Fig. 27- The test and training error as a functidnthe
iteration for the inverse model of the second systath 20
neurons.

VI.

Two systems were presented where the behavioreofetst
and training error is not the monotonic decreagisgally
pointed out in the literature.

The objective is to show that for systems subjectdise or
actuation delay it is quite common to find a bebavdifferent
from simulated systems.

The differences found in the test error for ANNs$hwinhore
parameters are also relevant since this largeofsadjustable
weights can lead to a better network, but onl\hé test error
is carefully evaluated.

CONCLUSION

These examples suggest that the choice of the siodel

characteristics must be careful to avoid gettingoast model
after a larger training period. This urges for tee of the
Early Stopping and Regularization techniques thatlme very
helpful both for manual and automatic model sedecti
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